Exercise 8

Solve the differential equation.

$$
y=y^{\prime \prime}
$$

Solution

This is a linear homogeneous ODE with constant coefficients, so its solutions are of the form $y=e^{r x}$.

$$
y=e^{r x} \quad \rightarrow \quad y^{\prime}=r e^{r x} \quad \rightarrow \quad y^{\prime \prime}=r^{2} e^{r x}
$$

Plug these formulas into the ODE.

$$
e^{r x}=r^{2} e^{r x}
$$

Divide both sides by $e^{r x}$.

$$
1=r^{2}
$$

Solve for r.

$$
r=\{ \pm 1\}
$$

Two solutions to the ODE are e^{-x} and e^{x}. By the principle of superposition, then,

$$
y(x)=C_{1} e^{-x}+C_{2} e^{x},
$$

where C_{1} and C_{2} are arbitrary constants.

